MGARD+: Optimizing Multilevel Methods for Error-Bounded Scientific Data Reduction

نویسندگان

چکیده

Nowadays, data reduction is becoming increasingly important in dealing with the large amounts of scientific data. Existing multilevel compression algorithms offer a promising way to manage at scale, but may suffer from relatively low performance and quality. In this paper, we propose MGARD+, refactoring framework drawing on previous methods, achieve high-performance decomposition high-quality error-bounded lossy compression. Our contributions are four-fold: 1) We leverage level-wise coefficient quantization method, which uses different error tolerances quantize coefficients. 2) an adaptive method treats as preconditioner terminates process appropriate level. 3) set algorithmic optimization strategies significantly improve decomposition/recomposition. 4) evaluate our proposed using four real-world datasets compare several state-of-the-art compressors. Experiments demonstrate that optimizations decomposition/recomposition existing by up $70 \times$ , can ratio notation="LaTeX">$2 compared other compressors under same level distortion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multilevel dimensionality-reduction methods

When data sets are multilevel (group nesting or repeated measures), different sources of variations must be identified. In the framework of unsupervised analyses, multilevel simultaneous component analysis (MSCA) has recently been proposed as the most satisfactory option for analyzing multilevel data. MSCA estimates submodels for the different levels in data and thereby separates the “within”-s...

متن کامل

A data-driven approach to optimizing spectral speech enhancement methods for various error criteria

Gain functions for spectral noise suppression have been derived in literature for some error criteria and statistical models. These gain functions are only optimal when the statistical model is correct and the speech and noise spectral variances are known. Unfortunately, the speech distributions are unknown and can at best be determined conditionally on the estimated spectral variance. We show ...

متن کامل

islanding detection methods for microgrids

امروزه استفاده از منابع انرژی پراکنده کاربرد وسیعی یافته است . اگر چه این منابع بسیاری از مشکلات شبکه را حل می کنند اما زیاد شدن آنها مسائل فراوانی برای سیستم قدرت به همراه دارد . استفاده از میکروشبکه راه حلی است که علاوه بر استفاده از مزایای منابع انرژی پراکنده برخی از مشکلات ایجاد شده توسط آنها را نیز منتفی می کند . همچنین میکروشبکه ها کیفیت برق و قابلیت اطمینان تامین انرژی مشترکان را افزایش ...

15 صفحه اول

Data Reduction Techniques for Scientific Visualization and Data Analysis

The classic paradigm for scientific visualization and data analysis is post-hoc, where simulation codes write results on the file system and visualization routines read them back to operate. This paradigm sees file I/O as an increasing bottleneck, in terms of both transfer rates and storage capacity. As a result, simulation scientists, as data producers, often sample available time slices to sa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Computers

سال: 2022

ISSN: ['1557-9956', '2326-3814', '0018-9340']

DOI: https://doi.org/10.1109/tc.2021.3092201