MGARD+: Optimizing Multilevel Methods for Error-Bounded Scientific Data Reduction
نویسندگان
چکیده
Nowadays, data reduction is becoming increasingly important in dealing with the large amounts of scientific data. Existing multilevel compression algorithms offer a promising way to manage at scale, but may suffer from relatively low performance and quality. In this paper, we propose MGARD+, refactoring framework drawing on previous methods, achieve high-performance decomposition high-quality error-bounded lossy compression. Our contributions are four-fold: 1) We leverage level-wise coefficient quantization method, which uses different error tolerances quantize coefficients. 2) an adaptive method treats as preconditioner terminates process appropriate level. 3) set algorithmic optimization strategies significantly improve decomposition/recomposition. 4) evaluate our proposed using four real-world datasets compare several state-of-the-art compressors. Experiments demonstrate that optimizations decomposition/recomposition existing by up $70 \times$ , can ratio notation="LaTeX">$2 compared other compressors under same level distortion.
منابع مشابه
Multilevel dimensionality-reduction methods
When data sets are multilevel (group nesting or repeated measures), different sources of variations must be identified. In the framework of unsupervised analyses, multilevel simultaneous component analysis (MSCA) has recently been proposed as the most satisfactory option for analyzing multilevel data. MSCA estimates submodels for the different levels in data and thereby separates the “within”-s...
متن کاملA data-driven approach to optimizing spectral speech enhancement methods for various error criteria
Gain functions for spectral noise suppression have been derived in literature for some error criteria and statistical models. These gain functions are only optimal when the statistical model is correct and the speech and noise spectral variances are known. Unfortunately, the speech distributions are unknown and can at best be determined conditionally on the estimated spectral variance. We show ...
متن کاملislanding detection methods for microgrids
امروزه استفاده از منابع انرژی پراکنده کاربرد وسیعی یافته است . اگر چه این منابع بسیاری از مشکلات شبکه را حل می کنند اما زیاد شدن آنها مسائل فراوانی برای سیستم قدرت به همراه دارد . استفاده از میکروشبکه راه حلی است که علاوه بر استفاده از مزایای منابع انرژی پراکنده برخی از مشکلات ایجاد شده توسط آنها را نیز منتفی می کند . همچنین میکروشبکه ها کیفیت برق و قابلیت اطمینان تامین انرژی مشترکان را افزایش ...
15 صفحه اولData Reduction Techniques for Scientific Visualization and Data Analysis
The classic paradigm for scientific visualization and data analysis is post-hoc, where simulation codes write results on the file system and visualization routines read them back to operate. This paradigm sees file I/O as an increasing bottleneck, in terms of both transfer rates and storage capacity. As a result, simulation scientists, as data producers, often sample available time slices to sa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Computers
سال: 2022
ISSN: ['1557-9956', '2326-3814', '0018-9340']
DOI: https://doi.org/10.1109/tc.2021.3092201